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SUMMARY 
Low-Reynolds-number results are presented for the drag and induced torque on a slender circular cylinder translating 
near a single plane wall. Four representative situations are investigated, the principal feature of the analysis being that it 
is valid for all distances from the wall which are large compared with the radius of the cylinder. In particular, the 
results hold for distances from the wall of the same order of magnitude as the length of the cylinder. The direction and 
rate of rotation are given for those cases where it occurs. 

1. Introduction 

Low-Reynolds-number slender-body theory has applications in several fields of fluid flow. 
In suspension mechanics it predicts both the bulk stresses and sedimentation rates of dispersions 
of long fibres in a Newtonian liquid. The earliest application, however, was in biomechanics, 
where Hancock [1] used the theory to investigate the self-propulsion of microscopic organisms 
by flagella, while Blake [2] has recently applied it to ciliary propulsion. 

In both these fields situations are encountered where the fibres or organisms interact signifi- 
cantly with solid boundaries. These occur, for example, in micro-organism motion between a 
microscope slide and coverslip, in ciliated micro-organisms since the slender organelles beat 
near the cell surface, and in the flow of suspensions during processing. Although wall effects 
are thus sometimes important  at low Reynolds numbers, only a few papers have considered 
the problem. 

In each of these a slender body translating near a wall is approximated by a distribution of 
point forces, called Stokeslets, along the body axis and an image system in the wall. The 
strengths of these forces are then determined such that the no-slip conditions are satisfied on 
both surfaces. Takaisi [-3] applied an approximate technique developed by Burgers [4] to 
obtain a polynomial expression for the Stokeslet strengths, while Blake [5] solved the appro- 
priate integral equations numerically and obtained the extra drag on the body due to the wall. 
De Mestre [-6] obtained analytic solutions for the special cases of a circular cylinder (i) moving 
parallel to a plane surface but normal  to its own axis and (ii) moving parallel to and midway 
between two walls. Related experiments supported the predictions. Experimental and theo- 
retical results could not be compared for any other orientations of the cylinder near the plane 
surface because fixed orientations could not be maintained during an experimental run. The 
cylinder rotated and drifted away from the wall as soon as it was released, even for the case of 
axial fall. 

In this paper  we extend the technique used in de Mestre [-6] to present analytical results for 
two of these rotating-rod situations, namely the representative orientations of axial fall parallel 
to a plane vertical wall and transverse fall in a vertical plane normal  to the vertical wall. In 
addition, the related cases of axial and transverse fall towards a horizontal wall are treated. 

* This paper was written while N. J. de Mestre was a visitor at the Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge. W. B. Russel was supported by a NATO Postdoctoral Fellowship, 
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For each of these four configurations the drag in the far-field limit agrees with that obtained 
from Brenner's [7] solution for a body of arbitrary shape falling far fl'om a single plane wall. 
Likewise, for orientations parallel to the wall, a near-wall asymptotic expansion of the predicted 
Stokeslet strength leads to the expressions given recently by Lighthill [8]. The complete solu- 
tions thus provide continuity between two known limiting cases. 

2. Slender body analysis 

The hydrodynamic disturbance caused by the low-Reynolds-number rotation or translation 
of a slender body can be represented by a distribution of singularities along its axis, a well- 
known method which can be formulated either intuitively or from a surface integral solution 
to the Stokes equations. We will not dwell on such developments here, but will proceed directly 
to the added effect of a nearby solid boundary. A second system of singularities must then be 
distributed along the axis of the slender body's image in the wall in order to produce zero 
velocity on the additional surface. 

The number of types of singularities which must be placed within a body to describe exactly 
the distributed flow field outside depends on both the symmetry of the body and the flow. 
When the body is slender, the total drag andtorque can be obtained to a useful order of approxi- 
mation by considering only a distribution of point forces (Stokeslets) over a line enclosed by 
the body. The image system for a point force Fj at a distance h from a plane wall has been de- 
termined by Blake [9] and consists of a Stokeslet of equal magnitude but opposite sign plus a 
Stokes-doublet of strength 2hFj and a source-doublet of strength 2hZFj. Incorporation of these 
into the Stokeslet representation for a slender body in the absence of the wall gives the induced 
velocity at any point of the fluid when there is no-slip on the plane wall. 

For each of the four cases under consideration we use a rectangular co-ordinate system which 
moves with the rod. Suppose x3 = 0 represents the wall and that the axis of the rod lies in the 
x 1 x3-plane at different orientations depending on the case considered but such that the centre 
of mass has co-ordinates (0, 0, L). 

Ifyi denotes the co-ordinates of a point on the axis of the rod of length 2I, Y~ the co-ordinates 
of the corresponding image point in the wall, s the directed distance from the centre of mass 
along the body's axis, and # denotes the dynamic viscosity, the induced velocity due the 
Stokeslets and their images has the form 

1 ( "+/ ~(l 1 )  fir j 
= r (s) ( ; - 6 , i  + 

8(h(S)R_Ri 

R~Rj 
R 3 

(~i~ RiRa'] I 
R / ds (1) 

where c~= 1,2 only; i , j  and k = l , 2  or 3; r i = x i - y i ,  r2=riri, R i = x i - Y i  and R2=RIRi. The 
terms containing r refer to the Stokeslet distribution inside the body, while those containing R 
arise from the image system and thus represent the effect of the plane wall boundary on the 
flow. 

To solve a particular problem one must choose Fj(s) such that the desired velocity field (rigid 
body rotation or translation) is produced at the surface of the body. For a slender rod in the 
shape of a circular cylinder of radius R0 and length 21, both Roll and the parameter 

= {in ( 2 t m o ) } - I  
are small; thus, the integrals can be expanded asymptotically and the Fj easily determined. 
The theory to be developed is valid for Ro ~ 1 and L, but there is no restriction on the relative 
magnitudes of I and L. 

2.1. CASE I 

For axial motion of the cylinder parallel to the boundary as shown in Fig. 1 we have 

s = x l ,  yi= xl  (Sil + L(Si3, Yi= Xl C~il - L(Si3, h= L . 
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When a rod moves axially in an unbounded fluid the flow field can be approximated by Stokes- 
lets solely in the axial direction. However, the problem for axial motion parallel to a wall 
requires that Stokeslets normal to the wall be included also. The condition for zero slip on the 
surface xi=(x,, Rocos 05, L+R o sin 05) of the rod is then formulated from Eqn. (1) as 

i / + '  {(~ I )  r,r, R,R, e{LR, ~,~ R~)}ds 
Ui = ~ -1 F 1 (s) - R t~il + r 3 R 3 4- 2Lt$kl ~ \ R 3 R 

I f  +' { ( !  1 )  rir 3 R i R 3 2 I _ , 6 k 3 ~ ( L R I  hi3 R/~_R33) } ds 
+ ~ -, Fa (s) - ~ (~i3 q- r 3 R 3 aRk k, ~ R 

(2) 

where ri=(x , - s ,  Rocos 05, Rosin 05), Ri=(x,--s , Rocos 05, 2L+Rosin  05) and for a rod 
with translational speed U and angular speed co about the x 2 axis Ui=(U, O, cox,). 

For Ro/l and Ro/L both small an asymptotic expansion of the integrals in Eqn. (2) as 
suggested by Batchelor [10] yields 

u-F'(x'){41n(~o)+21n8rc# (l-XZ']-2-E'(x')+O(?l 2/1 , ~ o ) }  

f L3 ( ~ _ )  1 +~ {F,(s)-F,(x,)} H,(x,,s)ds - - -F3(x , )G(x , )+O F3 , + ~ -z ~#  

L 3 F 3 (x 1) cox, = -~ F,(x,)G(~,) + 4~,--~ 

where 
1 

G(x1) = 
{(1- x,) 2 +4/~} ~ 

+ O ( ~ - F , , F 3 ) ,  

1 
{(l+ x,)Z +4L2} ~ ' 

(3) 

(4) 

(5) 

2 2 2L 2 6L 2 (x 1 - s) 2 
- + + HI(X ,, s) ]xt-s[  p ~ p5 with p2 = ( x l - s ) 2 +  4/~ , 
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El(Xl) = 2 arcsinh + 2 arcsinh \ 2L / § 

( l -x1)  2rz(l § x,) 
§ {(l_x1)2+4L2}}- {(I§247 

Equations (3)-(5) are satisfied to order e 2 by choosing 

= 8n#Ue 

1 12/ 

( l + x j  
{ (l + x~)Z + 4L2} ~ 

2L2(l-xl) 
{(l_ x~)Z +4L2}~ �9 

(6) 

F3 = 4n#e {o~ -2eUL 3 G(xa)} + O (e3), (7) 

where co is O (e) as will be shown shortly. The z-term must be retained in the denominator of 
Eqn. (6) because E I becomes large as L/l-,O. 

Now the total drag on the rod is given by 

i +' F1 (xl)dxl , 

and to the order considered in Eqn. (7) it is seen that the net lateral force 

f +l F3(xl)dXl = O. -I 
Thus, provided eEI is o (1) as e ~ 0  the total drag is obtained from Eqn. (6)as 

~,  = 2n#Ud [2 + e {-O.614+ Wi} +O (e 2, ~R~ )] 
where 

l ( 7L 
W l = 2 a r c s i n h ~ -  3 \1 + 12 ] + - - -  

21 2/2 + 12/ 

is the contribution due to the presence of the wall. For closer approaches to the wall an expan- 
sion in L/l or a straight numerical integration of Eqn. (6) must be performed. 

The limiting forms of this drag expression are 
(i) the far-field solution which l/L~O and 

13 
~i=2nt~U~l[2+e {-O.614 + ~lL} +O (~ ~ - ,  e3 ) ] ,  

a particular case of Brenner's [7] more general result for arbitrary-shaped bodies, and 
(ii) the near-field solution for which 1 >> L >>Ro and hence letting L/l-~O in Eqn. (6) yields 

4n#Ul 
ln(2L/Ro)' 

agreeing with the results given by Lighthill [8]. 
The angular velocity of the rod is calculated from the fact that there is no resultant torque 

on it in this pseudo-steady situation. Now the Stokeslets F 1 produce zero moment about the 
centre of mass of the rod, therefore 

f +z -I X1 F3 (x1)dx1 = 0 

which yields from Eqn. (7) 

~o = ~3U(L/0 3 Xl~(X,)d~l  + O(e 2) 
l 

e3UL 2 ~ 1 + 12/(2L 2) 
- t3 [(1+12//~) ~ l l + o ( e  2) 
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as a-~0. It is interesting to note that for fixed U and I the angular speed is a maximum at L ~ 0.45/. 
Since the dominant term in the expansion for co is positive, the rod rotates so that its leading 
end moves away from the wall, an effect which has been observed experimentally by de Mestre 
[6]. 

If the,rod is prevented from rotating by an applied external couple then co = 0 in Eqn. (5) and 
hence in Eqn. (7). Thus the required couple ~ has components 

1 + 12/(2L z) 
~1 = ~"~3 m O, ~2 ---~ ~2 87z~lUL 2 1 ~ + ~  | .  

2.2. CASE II 

For a cylinder parallel to the wall and approaching it with velocity U as shown in Fig. 2 the 
co-ordinates of Case I are still appropriate. Besides employing distributions of Stokeslets in the 
xl and x3 directions this problem is conveniently solved by including an axial distribution of 
source-doublets in the x3 direction with the appropriate image system. 

The image system for a source-doublet of strength D3 at a distance h from a plane wall x3 = 0 
can be obtained from Lorentz [11]. The corresponding velocity field is 

0 Ui(X ) = ~ -- ~- -ff - - ~  q- ((~i3~3k--~iar~k) \ R  3 -- 2h ~ i i  \ R3 J 

with all variables defined as for Eqn. (1). Thus the no-slip condition on the rod for this case is 

f+l {(~ ~)  rirl RiR1 ~ /LRi (~i3 RiR3_~} 
1 Fl(s) - 6i1+ r 3 R3 + L 6 k , ~  R R3 ] ds = 

1 ( +* { ( !  1 )  r,r 3 RiR 3 ~ ~LR, (3i3 R~R311 
-~ ~ d-1 F3(s) ~i3  q-  Y 3 R 3 LC~k3 ~ k ~  R R3 ] ds 

I f  +l { ~ 6i3 ~3-- 3rir3 //63k 3 ~35R k) 
- l  \ R3 

-2C R, if3 R ' as (s) 

t - - J  

113 

:~ XI . .  

/ / / - - / / / / 7 / / / / / / / / 7 / / / / / / / / /  

Figure 2 
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where symmetry of the flow about the x3 axis means that V~ = (0, 0, - U). 
The slender-body expansion of Eqn. (8) for Ro/l and Ro/L both small is similar to Case I 

and yields 

2rt#~ zt# F3(x ' )G(x l )+O a, F3, D3 

Ro F Ro 0 = 0  ( ~ - F D - ~  3,-~5-D3) 

- U =  

where 

and 

re# F l ( x l ) G ( x l ) + O  F1 

F3(xl) {21n (R2~/o)+ In (1 ~ _ j + 2 c o s 2 ( a _ E , , + O  ~ ~2)} 
+ 8-~-# - ' 

i f  +' {r3 (s) - F3 (x 1)} (x,, s) ds 
+ 8 ~  -z 

D3 { 2 4 cos2~b } 
+ 8~p - R--~o + R~--o + O(1) (9) 

1 1 2L z 24L 4 
nlt(X1, s) - ix 1 - s [  p p3 p5 

(l+ XI) (l--Xl) 2(l+ xl) 
Eli= arcsinh \ 2L / + arcsinh \ 2L / + {(l+xa)Z+4L2} ~ 

2(/-x~) (l+Xl) 3 ( l-x1) 3 
+ {(l_xl)Z+4L2}+ - 2{(l+xl)Z+4LZ}~ - 2{(l_x1)Z+4i~}~. 

In a similar manner to Hancock [1] we remove the ~b-dependence in Eqn. (9) by choosing 

D3 (xa) = -aRZF3(Xl) 
and then the asymptotic solutions for the Stokeslet strengths are 

= - 8~#Uz 

F3(x1 )  2+e{ln  (1 -x2]lz ] + 1 - E u }  + O(e3) 

and 

(lO) 

F1 (xl) = - ez 4rc#U L 3 G(xl) . 

The symmetry of the Stokeslet strengths about the x 3 axis means that there is no rotation in 
this case. 

Since/71 is an odd function of xl the total drag on the cylinder is 

fflI = [ +1 F3(Xl)dX 1 
J -l 

= - 4g#Uel [2 + ~ { - 1.386 + Wn} + O (~2, eRo/L) ] 

when the wall effect 

l 1 
W~ I = 2 arcsinh ~ + (1 + L2/12) ~ 

is 0 (1), but for closer approaches the total drag must be calculated either numerically or by 
expanding Eqn. (10) for L/l.~ 1. 
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As 1/L~O the far-field limit 

I { 3/} ( 13 ~ , ~2 ) ]  YI~= -4rc#Uel 2+e -1.386 + ~ + 0  L5 

while as L/l--,O (1 ~> L >> Ro) the near-field limit becomes 

-8n12Ul 
fin ~ in (2L/Ro)- 1" 

These agree respectively with the results given by Brenner [7] and Lighthill [8]. 

2.3. CASE III  

For the cylinder in Fig. 3 which is oriented normal to the wall but is moving with velocity U 
parallel to it, the co-ordinates appropriate to Eqn. (1) are now 

s= x3--Z, yi= x3~)i3, Y/m-x3(~i3, h=x  3 . 

A similar analysis to Case II using a Stokeslet distribution Fl(x3) and source-doublet distribution 
D1 (x3) = 1 2 -~RoF~(x3) along the axis L - l < x 3 <  L+l,  x l=x2=O of the rod yields 

and 

F1 (x3) 8rc#Ue - + o ( ~  ~) 

f L+l 
~ I I I  ~- ) L - I  v l  (x3)dx3 

= 4rc#Uel[2+e{- 1.386+ Win}+ O(e2)] 
where 

/ / / / /  

Figure 3 

/ / / /  / /  / / 

X 3 

/ / / ' /  / / / / / / / / 7  
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and 

, I / x 3 §  4 1 x 3 ( L x 3 + L 2 - I  2) 
E,. j + 

l _ (1 / ) + 2 L  W i n = ( / +  1) ln ( 1 + ~ ) + (  L 0 In - / 

reflect the wall influence. 
While the far-field limit o f ~ n  agrees with [7], in the limit as L / l ~ l  it is noted that W~I I remains 

finite, contradicting physical expectations. The results are no longer valid, however, when the 
end of the rod approaches within a few radii of the wall. Then the flow in the neighbourhood 
of this end, which makes a considerable contribution to the total drag, cannot be determined 
accurately enough by a line distribution of Stokeslets. The correct approach would be to 
co nsider a surface distribution, although in this case lubrication theory migh t be a more tractable 
alternative. 

Intuitively, one would expect a couple-free rod moving as in Fig. 3 to rotate about its centre 
of mass since the end closer to the wall must move slower. Indeed, the couple needed to maintain 
the rod normal to the wall has components 

$1  = 2 ' 3  =0 ,  

f 
L+l 

~ 2  = (X 3 -- L)  f 1 dx 3 
, L - l  

= -~22rct~U12 { , 1 '  ( ~ - 1 ) I n  (1 - ~ ) }  + O ( e 3 ) .  

Alternatively, if the rod is free to rotate, its angular velocity 

3 
CO - -  87.C#13 g ~'Q'~2 

is again an 0 (e) effect. 

2.4. C A S E  I V  

Finally, for a cylinder approaching the wall along its axis with velocity U (Fig. 4), the co- 
ordinates of the last case can again be used in Eqn. (1) for a Stokeslet distribution F3 (x3) only, 
because the flow field is axisymmetric. The appropriate integral equations yield 

F3 (x3) = - 4rc/~Ue + 00;3 ) 

and 
J~v  = - 2re# Uel [2 + e { - 0.614 + Win} + O (e2)]. 

In this orientation the angular velocity of the rod is zero, although it appears to be unstable to 
small angular perturbations. 

3 .  C o n c l u s i o n s  

As a measure of the wall influence on the total drag we compute for each case 

A Y ~-M - ~o~ 
- ( M  = I, I I ,  I I I ,  I V )  

where Soo denotes the drag in unbounded fluid for either axial or transverse motion, depending 
on the case under consideration. This wall-effect quantity is plotted against L/1 in Fig. 5 for a 
slender body with aspect ratio l/Ro = 50 (e = 0.217), a value near those frequently occurring in 
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biomechanical studies. The general shapes of the curves will be the same for all slender-body 
values of e. 

Clearly the drag increases as the wall is approached. The axial motion of a rod towards or 
parallel to a wall (Cases IV and I) are influenced to only a small degree by the wall's presence. 
Transverse motion parallel to the wall (Case III) is also only slightly effected, but curve II for 
transverse motion towards the wall shows a sharp rise in the drag when the rod approaches 
within a body length. 

Since Cases I and III cover extreme orientations for a rod moving parallel to a wall, it can be 
deduced that the wall effect is less than 15 ~o for a rod moving parallel to a wall at any orientation 
when its centre of mass is more than a body length away from tile wall. 

For  motion towards a wall it has already been suggested that Case IV covers an unstable 
orientation. The wall would tend to slow down the leading edge of a rod falling towards it at an 
angle, producing orientations that approach Case II. Thus rods falling towards a wall are 
appreciably slowed down as they approach within a body length of the wall. 

Of course rods which are orientated neither perpendicular nor parallel to a wall move 
obliquely towards any wall they are approaching. The results of this paper show that it is the 
component of velocity normal to the wall which is influenced most of al! by the wall. As a 
consequence of this the rod assumes a new orientation making a smaller angle with the wall. 
When this is combined with the rotation effect analysed in Case I it is seen that a rod approaching 
a vertical wall obliquely will eventually be repelled away from the wall. 

It is interesting to note that outside a distance of one body length the error involved in 
using the approximate drag expressions obtained from Brenner I-7] instead of the expressions 
for ~M given by this paper is at most 1~ .  Calculations show that this is true for all e < 0.4 
and means that Brenner's far-field expressions are in fact useful down to L = 2l. 

The small values of A ~ / ~  for three of the curves in Fig. 5 suggest that we should consider 
the wall effect for distances from the wall comparable with the radius of the rod rather than 
its length. However the theory developed depends on RolL being small. This means that we 
can only use our results to plot A Y / Y ~  against L/R o values greater than 5, and this is done in 
Fig. 6 for the two cases of rod motion parallel to the wall (Cases I and II). For  the remaining 
cases a more pertinent separation ratio to plot the wall effect against is ( L -  l)/Ro (See Fig. 7). 
Extreme values ofe were used in both figures to show the range of the effect for variations in the 
slender-body parameter. The upper limit of slender-body theory is taken as 21/R o = 10 (e = 

~ ( ~ =  0.145)  

I(E. = 0 .435)  
, > L 

Figure 6 
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0.435) for which the errors in using slender-body approximations are rather large. We take as 
an example of a very thin slender body 21/Ro = 1000 (e =0.145), from which it is noted that e 
changes only slightly with large changes in the aspect ratio. 

The curves for Case 11 (Fig. 6) show the dominance of the wall effect for most slender bodies 
in this situation once they approach within five diameters. A rod moving parallel to the wall 
(Case I ) is not influenced as much, particularly if it is very slender. On the other hand A ~ / Y ~  
(M = I I I  and IV) both show little variation and small magnitudes for all e as the rod approaches 
the wall. This emphasises the limited influence of the wall on the drag of rods normal to it. 
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